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Tests of Significance for Temperature 
and Precipitation Normals 
H.  C.  S .  THOM and MARCELLA D. THOM-Environmental Data Service, NOAA, Silver Spring, Md. 

ABSTRACT-A t-test is given to test monthly temperature 
normals, and a new test related to the F-test is developed 
for testing monthly precipitation normals. The theory 
involving the two errors committed in using such tests 

is discussed. This theory is used to set the probabilities of . 
type 1 and 2 errors a t  predetermined levels. The tests are 
applied to examples from the normals revision program. 

1. INTRODUCTION 

I n  the early 1950s, the US.  Weather Bureau computed 
a set of monthly temperature and precipitation normals 
based on the period 1921-50 according to newly adopted 
World Meteorological Organization “Technical Regula- 
tions.” The latter also provided for the decennial review 
and revision of normals to provide unbiased estimates of 
normals for the 30-yr period ending every 10 yr. It 
therefore became necessary to review 1921-50 normals 
and to estimate normals for the period 1931-60. We 
define the normal to be the population mean; thus, all 
statistics we calculate will be statistical estimates of such 
normals. In  accordance with common practice, we shall 
often refer to these estimates as normals. It should 
always be remembered, however, that me can never know 
the true normals or any other climatological parameters, 
but only statistical estimates of them. This is a basic 
concept of climatological analysis. 

In  the process of estimating the 1931-60 normals, we 
decided to test the difference between the 1931-60 and 
1921-50 normals for statistical significance. This would 
not only provide a convenient tool in adjusting hetero- 
geneous records, but would allow commercial users to 
retain 1921-50 normals where differences between the 
old and new normals are only random. In  some commer- 
cial uses of temperature normals, the system involving 
them is rather complicated, and a change to new normals 
requires a costly modification of the system. 

2. SIGNIFICANCE TEST FOR TEMPERATURE 

As for the 1921-50 period, new normals were to be 
estimated for monthly average maximum temperature, 
monthly average minimum temperature, and the monthly 
average of these. Since all of these are close to normally 
distributed (Thom 1968) and require use of the difference 
method of adjustment, it is natural to  test the simple 
difference between the mean temperatures for the two 
periods 1921-50 and 1931-60 by the t-test. The interval 
1931-50 is common to both normal periods; hence, a test 
of the simple difference between the two periods would 

result in a test of the difference between the 1921-30 and 
1951-60 periods. This would be all right if the 1921-30 
period could always be separated, but, due to many adjust- 
ments for heterogeneity, this is not possible in most 
instances. Hence, it was necessary to test the mean for the 
1951-60 period, the mean for the new data, against the 
old normal for the 1921-50 period. Clearly, this applies 
generally to any standard normal period. 

We recall that Student’s (‘t” is the ratio of the difference 
between the means divided by the standard error of that 
difference. The difference may be written 

where go is the 1921-50 normal for a particular month, 
and ’tlo is the mean for 1951-60 for that month. Since t.he 
variance (or scale), v, of temperature is conservative for the 
heterogeneities in the records used in estimating normals, 

=~(t)/30+v(t)/10 

=(2/15)~(t). (2) 

s(&o-?lo)=0.365 s ( t )  (3) 

The standard error of a is then the square root of eq (2),  or 

where s( t )  is the standard deviation of monthly average 
temperature. To avoid confusion of the two kinds of t ’s ,  
we shall use w for Student’s t. Thus, the test statistic is 

(&O--t10) 

0.365 s ( t )  W =  (4) 

and w has the degrees of freedom of s( t ) .  
Since the correlation between average monthly maxi- 

mum and average monthly minimum temperature is 
high but not, of course, one, their variances tend to 
average slightly higher than that for the average monthly 
temperature. Thus, it was deemed satisfactory to  use the 
standard deviation of the average monthly temperature 
for testing the normals of average monthly maximum 
and average monthly minimum temperatures. This sub- 
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stitution gives slightly inflated w's for tests on the latter 
temperature normals. 

3. PROPERTIES OF TESTS OF HYPOTHESIS 

Although it is the usual practice in meteorological work 
to  choose some standard significance limit probability 
such as 0.05 or 0.01, it is useful in most instances, and 
especially here, to  give more detailed consideration to 
this choice. A statistical significance test or statistical 
test of hypothesis in its most basic sense consists of a hy- 
pothesis, commonly called the null hypothesis, a hypoth- 
esis alternative to  this called the alternative hypothesis, 
and a rule based on probability of occurrence to decide 
which hypothesis to accept. The test statistic, the prob- 
ability tables for the test statistic, and the significance 
limit or limits comprise the rule for deciding whether to 
accept or reject the null hypothesis. Rejecting the null 
hypothesis is equivalent to accepting the alternative 
hypothesis. The probability tables for a test are made 
from the distribution of the test statistic when the null 
hypothesis is true. In  making a test, the null hypothesis 
is rejected (alternative hypothesis accepted) when the 
test statistic exceeds the significance limit or is outside 
the range over which the null hypothesis is to  be accepted. 
The probability of being outside the range of acceptance 
of the null hypothesis when it is true is the significance 
limit probability (0.05, 0.01, etc.) ; hence, the probability 
of rejecting the null hypothesis when it is true is equal to 
the significance limit probability. This rejection of the 
null hypothesis when it is true or acceptance of the 
alternative hypothesis when it is false is, of course, an 
error and statisticians call it the type 1 error. The prob- 
ability of committing this error in making a test of hypoth- 
esis is t h e  significance limit probability. 

Often the type 1 error is the only error considered; that 
is, the researcher chooses a significance limit and makes a 
test without giving consideration to the other error called 
the type 2 error. The type 2 error is acceptance of the 
null hypothesis when it is false, or what is equivalent, 
rejecting the alternative hypothesis when it is true. If the 
type 1 error is fixed, the type 2 error is reduced by con- 
trolling the trials artificially and increasing their number 
as can often be done in the laboratory. Thus, in physics 
experiments, the type 2 error is not ordinarily of as much 
concern. In  meteorology, however, control is usually im- 
possible and the number of trials is usually small and often 
impossible t o  increase. Hence, the type 2 error may be 
large and important to  know. This is particularly true 
in testing new theory. For example, the type 2 error is 
rejection of the alternative hypothesis when it is true, and 
if the test does this with a high probability, a new hypoth- 
esis based on a desired alternative may be lost or not given 
proper consideration. One of us introduced these concepts 
in the evaluation of artificial augmentation of precipitation 
where cost ratio is very high, and one does not want to 
risk losing a large gain for a very low cost. If a small 
significance probability is employed, it is practically a 
certainty that the type 2 error will be large in most 

meteorological work as will be seen in two examples that 
follow. 

We have seen that the probability of the type 1 error, 
a, is obtained from the distribution of the test statistic 
on the null hypothesis; that is, when the null hypothesis 
is true. In  a like manner, the probability of the type 2 
error, ,8, is obtained from the distribution of the test sta- 
tistic on the alternative hypothesis; that is, when the alter- 
native hypothesis is true. Since /3 is the probability of 
rejecting the alternative hypothesis when it is true, 1--p 
is the probability of accepting the alternative when it is 
true. This is called the power of the test since it measures 
the capability of the test to accept the alternative hypoth- 
esis, which is often the desirable outcome of an experiment. 
We are now in a position to  discuss certain relationships 
between the various elements of a test. 

For simplicity of explanation, we assume that the alter- 
native hypothesis is greater than the null hypothesis; that 
is, we are testing whether the population value of the test 
statistic is the null value, Ho, or the alternative value, 
HI, where d=Hl-Ho. The distribution of the test statistic 
when the null hypothesis is true will be spread about Ho 
with the significance limit, b, to  the right of Ho on the 
test statistic scale. If a test statistic is to  the left of b, 
the null hypothesis will be accepted; if to the right of b, 
the alternative hypothesis will be accepted. The area under 
the null distribution to the right of b is CY or the significance 
limit probability. The distribution of the test statistic 
when the alternative hypothesis is true is spread around 
HI, which is to the right of Ho. The probability of a type 
2 error, p, is then the area of the alternative distribution 
to the left of b.  

The effect of variation in the test parameters: the type 1 
error probability, a (or significance limit, b) ,  the sample 
size, n, and the size of the alternative, HI (or its distance d 
from the null value, Ho), on the type 2 error may now be 
seen. For fixed sample size and alternative, HI, if CY is 
made smaller, b becomes larger, and there is larger area ,8 
of the alternative distribution to the left of b. If CY is made 
larger, b moves to the left and the area to the left of b is 
less so p is smaller. Thus, the probability of the type 2 error 
varies inversely with a. This is important in meteorological 
trials, for decreasing CY also decreases the ability to accept 
the alternative. Thus, if the alternative is an improved 
method or a potentially valuable new theory, it will often 
be rejected with high probability if the significance 
probability a is made too small. It is for this reason that 
we have frequently adopted a basic value of a=O.lO for 
meteorological work where nothing definite is known about 
the power of the test. If the type 2 error can be determined, 
of course, the significance limit can be given more detailed 
consideration as will be seen below. 

For fixed CY and H I ,  it i s  seen that as HI moves closer to 
Ho, more area on the left tail of the alternative distribu- 
tion is cut off by the significance limit, thus increasing the 
type 2 error or decreasing the power. As HI moves farther 
to the right away from Ho, less area is cut off and the type 
2 error is decreased or the power is increased. This fits with 
our intuitive notion since, if H,  and HI are close together, 
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it is more difficult to differentiate between them than when 
they are farther apart. 

For fixed CY and Hl one can see that if n is increased, the 
dispersion or spread of both the null and alternative 
distributions decreases because the sampling variation of 
the test statistic decreases with sample size increase. This 
not only causes the significance limit to move toward the 
left, cutting off less area on the alternative distribution, 
but the decrease in spread of the alternative distribution 
also causes less area to  be cut off on b ,  and both cause a 
decrease in type 2 error or an increase in power. Again, this 
fits our intuitive reasoning, for the more trials we have the 
more sure we are of correctly accepting or rejecting a 
given hypothesis. 

4. RISKS OF ERROR FOR TEMPERATURE TESTS 

We have seen that a, p, d, and n are the parameters of 
the classical test of hypothesis we are concerned with here. 
Since n is always fixed before a sample is drawn, with a 
given alternative only CY and p can vary. These are prob- 
abilities and hence are determined by frequency distri- 
butions. In  the case of Student's test used for temperature 
normals, CY is determined by the null distribution, which is 
Student's distribution or the t-distribution (w-distribution 
here). This is located centrally around the null hypothesis, 
Ho. is determined by a more complicated distribution 
called the noncentral t-distribution and located centrally 
about the alternative hypothesis, Hl, noncentral to  the 
null distribution. 

Tables of Student's distribution are, of course, readily 
available, and, although several tables of noncentral 
t are available, they are rather complicated to use. 
Fortunately, there is a good approximation that relates 
CY, 0, d, and degrees of freedom, f, that requires use of 
only normal probability tables. For the two-sided test, 
this is 

(5) 

where ul-p is a unit normal quantile. The two-sided 
test is one for which the alternative hypothesis is both 
on the right and left of the null hypothesis; that is, one 
which tests for the true value being above or below the 
null hypothesis. We must use this test because we wish 
to test for both positive and negative departures of the 
new normals. To use eq (5) for one-sided tests, we merely 
replace 1x12 with a. 

When methods for the preparation of the 1931-60 
normals were first being considered, it was thought that 
a statistical test would be used to decide whether a 
normal was to be revised or left standing. Later, in view 
of international recommended practices, it was decided 
to estimate new normals regardless of the result of the 
significance test although the test was used in helping 
to determine heterogeneities. The test was also to be 
used to  determine the significance of, and therefore the 
reality of, the difference between 1921-50 and 1931-60 

f( Id1 -Ul-a/z)- 1.21 U1--a/2(~1--./2-1-06) 
u1-p= f+ 1.21 (ul-a/z- 1 .OS) 

normals so that those that showed significance could be 
marked. This provided industrial users with a means of 
deciding whether or not they must change a particular 
month's normal in their computational procedures. 
Under future conditions, it is recommended that only 
those normals be changed that are significantly different 
from the last normals. Our discussion now relates to the 
1941-70 period. 

To decide upon a reasonable alternative hypothesis, 
we employed the following reasoning: the maximum 
standard deviation of monthly average temperature over 
the United States from Thom (1968) is about 11°F in 
winter and 4°F in summer. The maximum standard errors 
in winter and summer for a 30-yr mean are therefore 
l/&G of these values or about 2.0" and 0.7"F. We would, 
therefore, like to have our significance test find real 
departures of 0.7 of a standard error or more due to the 
use of the previous normal period. A departure of 10.71 
on the unit normal distribution (mean of zero and standard 
deviation of one) has a probability of 0.50 of being ex- 
ceeded. The general value of d for a particular set of 
record periods is 

- - 
d= t31-60- t61-70. (6) 

Also, the required new normal is 

Substituting, we get 

(7) 

It is seen that d has the weight one-third, therefore, we 
will wish to  recognize alternatives of d/3=0.7 or more or 
d=2.1°F. These departures can be either positive or 
negative so that the test must be a two-sided test with 
Id1 = 2.1"F. 

Although more complicated weightings would result in 
risk functions relating the two types of errors, we felt 
that not enough information was available for such an 
analysis. Consequently, we have assumed that it would 
be as bad to revise a normal when it did not need. it as 
it would be not to revise one when it really did need it. 
Hence, we wish t o  make the probability of a type 1 error 
equal to the probability of a type 2 error with alternative 
ldl equal to 2.1"F. 

For the two-sided test, the alternative is Hl-Ho= Id[. 
Unfortunately, even though the type 1 and type 2 error 
probabilities are equal, ul--aIz#ul-p; so eq (5) can only be 
solved for the required conditions by approximation. For 
one-sided tests, U ~ - ~ = U ~ . . . ~ ,  hence eq (5) can be put 
in quadratic form and the proper root, u ~ - ~ ,  easily 
found for a given value of d. Solving eq (5) for d we have 

After several trials, we found that for a=p=0.20, and 
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f=29 degrees of freedom, 

ldl=(1.282+0.842) (1.282-1.06) =2.1* 1 
Thus, for the 0.20 significance limit or 0.20 probability 
of a type 1 error, the probability of a type 2 error is also 
0.20. The power of the test is 1-0.20=0.80. This means 
that the test gives a correct decision to revise a normal 
in 0.80 of the tests based on a departure Id1 haviqg an 
additive effect of f0.7 of a standard error in determining 
the 30-yr mean. 

This is a very satisfactory power when compared to 
the many situations where no consideration has been 
given to the power. For example, with the same alter- 
native and record length n=30 for a 0.05 significance 
limit, u ~ - ~ , ~ = u ~ - ~ , ~ ~ ~ =  1.960, eq (5) now gives 

29t2.1-1.96)-1.21(1.96)(1.96-1.06)- -0.07. 29+1.21(1.96--1.06) u1-8' 

From normal tables we find l-p=0.53. Thus, the power 
is only 0.53 with a 0.05 significance limit. For the 0.01 
significance limit, the power is only 0.37. This means 
that the alternative hypothesis will only be accepted a 
little over one-third of the time when it is true. Thus, 
neither the 0.05 or 0.01 significance limits give satis- 
factory powers. 

5. SIGNIFICANCE TEST FOR PRECIPITATION 

The problem of testing precipitation normals is similar 
to  that for temperature; that is, it is desired to test whether 
the substitution of a subsequent 10-yr period of record 
would make a significant difference in the 30-yr normal. 
The adjustment of precipitation means and totals is done 
by the ratio method; hence, it is natural to use a ratio as 
the test statistic. Barger and Thom (1949) and Thom 
(1958) showed that monthly precipitation is distributed 
in a gamma distribution. Since the totals or averages of 
several individual gamma variates with the same scale 
again have gamma distributions, we will be concerned 
with the ratio of two gamma variates. It is well known 
that this ratio has a beta distribution of the second kind. 
This is also the familiar F-distribution with parameters of 
the beta distribution equal to fJ2 and f2/2 where fl and f2 

are the degrees of freedom in the two variances whose 
ratio is F. Since we are not concerned with degrees of 
freedom here, and since the beta parameters need not be 
integers, the beta distribution that we need to use is more 
general than the F-distribution. 

We take the test statistic to be the ratio of the total for 
the 10-yr record for a particular month for the period 
1961-70 to the total for that month for the normal period 
1931-60. If we express the 10-yr total as xl=Zp and the 
30-yr total as x2= 3o2)sO, where the p's  are values for the 
individual months during the 10-yr period, and p30 is the 
normal for the 1931-60 period, we may express the test 
statistic as 

G!= x1Ix2. (10) 
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The distribution of the total of 10 identical gamma 
variates with parameter y is a gamma distribution with 
parameter 107. Likewise, 30p3, is distributed in a gamma 
distribution with parameter 30y. Thus, p has a beta 
distribution with parameters 107 and 30y. 

While the beta distribution is well known, there were 
no tables for beta that cover the range of y required; 
therefore, a new table had to be prepared. If the param- 
eter of the precipitation distribution for a given month 
is y and the parameters of the beta distribution of q are 
y1 and y2, then yl=lOy and yz=30y. Since yz is always 
three times yl, our beta table need only involve yl; in fact, 
it can be prepared for 107 so that all that is necessary to 
use the table is to multiply the y for the monthly precipi- 
tation distribution by 10 and enter the table to obtain 
the limits of probability. Before we proceed to developing 
a table for testing the significance of p, we need to settle 
on the significance probability levels or the type 1 error, 
a. As we have seen above, a mill be related to p, the type 
2 error, and inasmuch as we wish to  control both errors, 
we need to study the relation between a, p, and the 
alternative hypothesis. 

According to the principles of testing hypotheses given 
above, we will accept the null hypothesis when the 
probability on p is 

B-l(a/2; 10,30) is the inverse of the beta distribution 
with parameters 10 and 30; in other words, it is a quantile 
of the B distribution. For simplicity we drop the para- 
meters and simply write B-'(a/2) for the quantile. To 
obtain the type 2 error, p, we write eq (11) conditional 
on the value of the alternative as follows: 

Dividing the inequality by cp= El/&= cp gives 

Thus, the beta variate x1/x2 is subject to a single scale 
change which is again a beta variate. Hence, 

It remains to  evaluate B-' ( 4 2 )  and B-' (1-2,!a) for the 
significance test of p and the evaluation of p for a reason- 
able alternative. 

Cochran (1940) has given approximations to Fishers' 
distribution of z that are related to our variable, p. The 
general formula for all probabilities is 



where u is the unit normal deviate,fl andfi are degrees of 
freedom in the z distribution, X is a function of the proba- 
bility associated with u, and h is given by 

2 1 1  -=-+-. 
h fl fi 

The p, F, and z variates are related by 

which after taking logarithms gives 

Since the beta distribution parameters are f1/2 and fi/2, 
fl=2y1, and f2=2yZ. Also, as has been seen previously, 
yz=3yl; hence, 

f2-3. (17) fl - 

Substitution in the last factor of eq (14) and in eq (15) 
yields 

and 

Substitution of eq (17) in eq (16) yields 

Substitution of eq (18), (19), and (20) in eq (14) gives 

Raising to the exponential gives the computational form 

Cochran (1940) gives the following formula for X as a 
function of u: 

This gives the value of p for rl=107 where y is the shape 
parameter of the precipitation distribution for a given 
month. 

Equation (22) will be used in approximating p. Also 
needed is the inversion of eq (21), which is the quadratic 

U2- +9yl In 3pf2=0 0 7 a  
for which the pertinent root is 

From eq (13), we see that to calculate the type 2 error 
probability, we must assume a value of q which gives a 
desired alternative. If we choose cp= 1.5, the alternative is 
(1/3)(2/3)=2/9. Thus, the alternative is 1/9 less than the 
mean value of p which is close to 1/3. After approximating 
a! and p several times for (an average value )yl=40 from 
eq (22) and (24), we found, using ~t/2=0.10(u-1.282) in 
eq (22) with Cochran’s value for X, that 

3‘654 1.09861=--1.34377 -2.564 
J(120-0.77) 360 

In PO. IO= 

and 

Similarly, 

and 

po.lo=exp (-1.34377)=0.261. 

In po. ,=0.23501-0.01015-1.09861=-0.87375 

po.,=exp (-0.87375)=0.417. 

Thus, the null hypothesis will be rejected if a sample, q,  
lies outside the interval (0.261, 0.417) and accepted if it 
is in this interval. 

Applying eq (13) with ~‘1 .5 ,  we find 

@=P(O 666 X0.261 <g<O .666 XO .417) 
=P(0.174<q<0.278). 

This is equivalent to 

We may employ eq (24) to evaluate the P’s. Substituting 
the limits from eq (25) gives ul= -3.33 and u2= -0.95. 
Since the u’s are unit normal deviates, from normal dis- 
tribution tables we find N(-3.33)=0.00043 and N ( -  
0.95)=0.17106. Hence, by eq (25), 

If cp is changed slightly to 1.47, we find ul=-3.25 and 
u2= -0.84 for which N(-3.25)=0.00 and N(-0.84)= 
0.20 from which p is now almost exactly 0.20. Thus, for an 
average value of y1 of 40, a type 1 error probability of 
0.20, and an alternative that is 119 less than the mean 
value of q,  the probability of a type 2 error is very nearly 
equal to the probability of a type 1 error. Similar results 
are obtained for an alternative above the mean value of 
q. The test then meets the requirements set out above 
and appears to be satisfactory for precipitation. 

The beta distribution (table 1) was prepared for a= 
0.20 as indicated above with parameters 107 and 307, or 
simply 107. For 107 from 1 to 16, Pearson’s tables (1934) 
were used. Above 107=16, eq (22) wasemployed. Cochran’s 
(1940) results indicate that the table should be reliable 
in the last decimal place. 

6. APPLICATION OF THE TESTS 

We apply the tests to two stations to illustrate the sim- 
ple computation. From official temperature records (US.  
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TABLE 1.-Beta distribution for a=0.20 

.- 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
39 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
4 t  
42 
43 
44 
45 
46 
47 
48 
49 
50 

0.040 
.089 
.119 
. 140 
. 1.56 
. 168 
. 178 
. 186 
. 193 
. 199 
. 205 
. 209 
. 213 
. 217 
. 221 
. 224 
. 227 
. 229 
. 232 
.234 
. 236 
.238 
. 240 
. 242 
. 244 
.245 
. 247 
. 248 
. 249 
.251 
.252 
. 253 
. 254 
. 255 
. 256 
. 257 
. 258 
.259 
. 260 
. 261 
. 262 
. 263 
. 263 
. 264 
. 265 
.265 
. 266 
. 267 
. 267 
. 268 

1.239 
.835 
.712 
. 647 
.607 
. 578 
. 556 
.539 
. 526 
. 514 
. 505 
.496 
.489 
.483 
.477 
.472 
.467 
.463 
. 45!3 
.456 
. 453 
.449 
.447 
.444 
. 442 
.439 
.437 
.435 
. 433 
,431 
. 430 
. 428 
.426 
. 42-5 
.424 
.422 
.421 

.418 

. 417 

.416 

. 415 

. 414 

.413 

.412 

.411 

. 410 

. 409 

.409 

.408 

. a n  

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 

0. 269 
. 269 
.270 
. 270 
. 271 
. 271 
. 272 
. 272 
.273 
. 273 
. 274 
. 274 
. 275 
. 275 
. 276 
. 276 
. 276 
. 277 
. 277 
.278 
.278 
. 278 
.279 
. 279 
. 279 
. 280 
. 280 
. 280 
. 281 
. 281 
. 281 
. 282 
. 282 
. 282 
. 282 
.283 
. 283 
. 283 
. 284 
. 284 
. 284 
. 284 
. 285 
. 285 
. 285 
. 285 
. 286 
. 286 
. 286 
. 286 

qO.80 

0.407 
.406 
.406 
. 405 
.404 
. 403 
. 403 
.402 
.402 
.401 
. 400 
.400 
.399 
.399 
.398 
.398 
.397 
.397 
.396 
.396 
.395 
.395 
.394 
.394 
.393 
.393 
.393 
. 392 
.392 
.391 
.391 
.391 
. 390 
. 390 
.390 
. 389 
. 389 
.389 
.388 
. 388 
.388 
.387 
. 387 
.387 
.386 
.386 
.386 
. 386 
. 385 
. 385 

Department of Commerce 1956), we find the 1921-50 
normal average maximum temperature for March for 
Boise, Idaho, to be t,,=52.2OF. From published records, 
we find the average maximum temperatures for Mwch 
1951-60, which when averaged gives 7,0=50.40F for the 

10-yr mean. From Thom (1968), we read the standard 
deviation for March at Boise to be 2.9OF. Substituting 
these values in eq (4), we find 

w= (52.2-50.4)/(0.365)< 2.9) = 1.70. 

Since this is greater than 1.31, the upper 0.10 value of w, 
or outside the range f 1.31, the 10-yr mean is significantly 
smaller than the old normal. This indicates that the 1931- 
50 record should be adjusted to  a new regime indicated 
by the 1951-60 record. If the value had been in the range 
w = f 1.3 1, we would have decided that there was no 
significant change in the record between 1931 and 1960. 

To apply the test for precipitation to August precipi- 
tation for Hartford, COM., we again used the U.S. 
Department of Commerce (1956) data. The 1921-50 
normal precipitation for August was F8,=3.54 in. From 
published records, we obtained the 10 individual August 
totals for which the sum is 50.62 in. Using eq (lo), we find 

50’62 -0.477. 30 X 3.54- 

From Thom and Vestal (1968) we found log, a statistica! 
estimate of ~ ~ = l O y ,  to be 48. Referring to the beta distri- 
bution table, we find g=0.409 for the 0.90 value at  lor= 
48, Thus, the Q for August is greater than the 0.90 value 
0.409 or outside the interval (0.267, 0.409) and is therefore 
significant. This necessitated an adjustment of the 1931- 
50 record to the 1951-60 period. If the value of Q had fallen 
on the interval (0.267, 0.409), i t  would not have been 
significant, and we would have decided against any 
adjustment . 
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PICTURE OF THE MONTH 
Severe Weather Situation, March 28, 1972 
FRANCES C. PARMENTER--Applications Group. National Environmental 
Satellite Service, Suitland, Md. 

Tornadoes, funnel clouds, and hail were reported 
throughout the Southern States on Mar. 28, 1972. This 
outbreak of severe weather developed from two separate 
systems: a mature system in the southeastern States 
and a system that developed in eastern Texas. 

The early morning Applications Technology Satellite 3 
(ATS 3) view (fig. 1) showed a large area of convective 
cloudiness (C) stretching from Georgia southwestward 
along the gulf coast. This cloudiness was associated with 
the rapidly moving midtropospheric Low that had 
produced severe weather in Louisiana the day before and 
was now centered over Alabama. Just prior to  this 
picture, two tornadoes formed in the trailing edge of this 
cloud system: one occurred northeast of Panama City, 
Fla., at  1405 GMT and one touched down near Marianna, 
Fla., at  1445 GMT. Figure 2 shows this area more than 

FIGURE 1.-ATS 3 photograph, Mar. 28, 1972, 1454 GMT. 

4 hr later (1933 GMT). The main cloud system is now 
located along the east coast and is most active across 
northern Florida into the Gulf of Mexico (D-E). A 
tornado was reported west of St. Augustine a t  this time. 
No additional severe weather was reported, and the 
convective activity gradually diminished over Florida as 
the main weather system moved &shore. 

Early in the day (fig. l) ,  low clouds covered a large area 
from Louisiana northwestward into Colorado ( G M )  . 
By 1933 GMT (fig. 2), the stratiform clouds in Louisiana 
and Texas had dissipated leaving fair weather cumulus 
over the region of moist southwesterly flow ( G ) .  Most of 
Texas remained clear until 1904 GMT. At that time, a faint 
line of towering cumulus became visible just west of 
Houston. These clouds marked the convergence zone 
between the warm moist Gulf air and the drier continental 

FIGURE 3--Same as figure 1 except 2011 GMT. 

FIGURE 2.-Sarrie as figure 1 except 1933 GMT. FIQURE 4.-Same as figure 1 except 2038 GMT. 
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FIGURE &-Same as figure 1 except 2131 GMT. 

air. The clouds that mark this “dry-line” can be seen 
stretching from H to I in figure 2. This line-feature has 
the characteristics of a potential tornado-producing 
system. By 2011 GMT (38 min later) (fig. 3), two distinct 
thunderstorm complexes (T) with anvil tops extended 
eastward from this line. Figure 4, taken 27 min later, 
shows further development of these thunderstorms along 
the dry-line (H-I). Radar reports indicated this to be an 
area of rain showers at  1945 GMT that became a line of 
thunderstorms with tops to 46,000 ft. by 2045 GMT. 

Figure 5 was taken as the first tornado spawned by this 
system touched down a t  Henderson, Tex. (H). Hail 
measuring 9 in. in diameter fell from the northernmost 
thunderstorm cluster near Texarkana, Tex., at  2310 GMT. 

This squall line moved eastward, producing eight tornadoes, 

FIGURE 6.-Surface isobars (solid lines) and dew-point front at 
2100 GMT, 500-mb contours (dashed lines) at 1200 GMT, and severe 
weather, Mar. 28, 1972. 

three funnel clouds, and numerous hailstorms throughout 
Texas, Arkansas, Louisiana, and Mississippi (fig. 6). 

Recent studies of frequent-interval pictures from ATS 3 
have allowed meteorologists to  recognize the potentially 
severe cloud patterns shown here. Satellite data often 
precede radar data in locating lines of developing cumulo- 
nimbus. These data are presently being acquired and 
incorporated into the operations and forecasts of the 
National Severe Storm Forecast Center in Kansas City, 
Mo. 
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